铅精矿(高银)化学成分分析

循环比对结果报告

中国矿冶检测机构联盟

China Mining and Metallurgical Inspection Institute Alliance

2017

中国矿冶检测机构联盟简介

中国矿冶检测机构联盟由国家重有色金属质量监督检验中心(北京矿冶研究总院测试所/北矿检测技术有限公司)、国家钢铁材料测试中心(国家钢铁产品质量监督检验中心、国家冶金工业钢材无损检测中心、钢研纳克检测技术有限公司)、国家金银及制品质量监督检验中心(长春)(长春黄金研究院检测中心)、国家矿物及再生金属材料质量监督检验中心(广州有色金属研究院分析测试中心、广东省有色金属产品质量监督检验站、广东省金属材料综合利用检测与评价中心、中国有色金属工业华南产品质量监督检验中心)、国家轻金属质量监督检验中心(郑州轻金属研究院检测实验室、中国铝业郑州有色金属研究院有限公司质检中心)、北京有色金属与稀土应用研究所(北京市冶金产品质量监督检验站)国内六家单位发起,在2015年9月7日召开23家理事单位首次会议,宣告正式成立。聘任北矿检测技术有限公司总经理李华昌为首届理事长、王海舟院士为专家委员会主任。

联盟的组织原则:合作、共商、共享、共赢。

联盟的宗旨:为矿冶行业提供优质高效检测服务,统一规范矿冶检测技术,强化检测质量,扩大国内矿冶检测机构在国际上的话语权,并最终实现统一的联盟品牌,共同走向国际检测市场。

联盟的目标:通过构建跨区域的矿冶检测公共技术服务平台,推动其在我国传统产业转型升级中的技术保障支撑作用,促进矿冶产业的科学发展。

中国矿冶检测机构联盟成员名单

理事长单位: 国家重有色金属监督检验中心/北矿检测技术有限公司

副理事长单位(7家): 钢研纳克检测技术有限公司、国家金银及制品质量监督检验中心(长春)、国家矿物及再生金属材料质量监督检验中心、国家轻金属质量监督检验中心、北京市冶金产品质量监督检验站、国标(北京)检验认证有限公司、长沙矿冶研究院有限责任公司分析检测中心。

理事单位(15家): 有色金属桂林矿产地质测试中心、大冶有色设计研究院有限公司、赤峰云铜有色金属有限公司、福建紫金矿冶测试技术有限公司、中国有色金属工业西北质量监督检验中心、山东祥光集团有限公司、河南豫光金铅集团有限责任公司、云南铜业股份有限公司检验分析中心、中条山有色金属集团有限公司、株洲冶炼集团股份有限公司质量检测中心、山东国大黄金股份有限公司、云南锡业集团有限责任公司研究设计院、金川集团股份有限公司检测中心、铜陵有色金属集团控股有限公司检测研究中心、中国物流与采购联合会稀贵金属质量监督检验测试中心。

中国矿冶检测机构联盟

2017年铅精矿(高银)化学成分分析循环比对结果报告

组织实施机构:中国矿冶检测机构联盟秘书处 国家重有色金属质量监督检验中心

北矿检测技术有限公司

负责人: 李华昌

联络人:于力 姜求韬 刘玮

电话/传真: 010-59069658、010-59069683 (FAX)

Web site: http://www.analysis-bgrimm.com/

联系地址:北京市大兴区北兴路(东段) 22 号 A702 室

景

᠆.	前	言
<u> </u>	统计	一处理结果及能力评价5
1	原女	台数据5
2	Pb	的数据分析10
3	Au	的数据分析16
4	Ag	的数据分析22
附	录 A	参与单位: (排名按首字拼音顺序)29
附	录 B	山东恒邦冶炼股份有限公司铅精矿(高银)样品均匀性检验报告 31
附	录 C	北矿检测技术有限公司 2017 年铅精矿(高银)样品均匀性检验报告
•••	•••••	
附	录 D	统计分析有关统计量的意义及其计算方法38
附	录 E	循环比对计划作业指导书40

一.前 言

1. 概述

本报告总结了铅精矿(高银)中 Pb、Au、Ag 含量的测定循环比对结果。

本报告记载了各参与单位的原始数据及数据比对结果。

报告中各参与单位以实验室编号形式(LAB××)出现。除秘书处外,各参与单位仅知晓本单位编号。由于各单位提供的平行测定值数量差异,可能影响最终数据比对结果。

2. 范围

本次循环测试要求对铅、金、银 3 个元素进行分析,报告以各参与单位的原始数据为基础,通过各种分析工具得出比对结果。

3. 报告简介

感谢各单位积极参与本次比对测试,希望本比对报告对各单位的分析流程管理、内部质量控制有一定的帮助。

报告中,各单位分析的精准度及允许误差通过如下分析项进行分析论证: Z 比分数 (标准化值)、总体平均值,中位值,标准化 IQR、最大值、最小值、极差、稳健 CV (%)、主效应图、95%置信区间概率图、各元素 Z 比分数柱状图等。

4. 参与条款

各参与单位报告平行测定值及相应的分析方法,作为比对依据;

5. 本次分析不具任何商业价值和评判价值。

6. 样品准备

本次比对测试样品为山东恒邦冶炼股份有限公司提供的铅精矿 (高银),经 105 摄氏度高温持续烘干,磨样,混合,过筛后,经均匀性检验,用铝箔真空包装,每份样品 120g,通过 EMS 快递发送至各实验室。

7. 比对原理

平行测定值是各分析工具的数据基础,分析前输入平行测定值,各分析工具以输入的平行测定值为依据计算出平均值,计算各参与单位的 Z 比分数(标准化值),方差齐性测试、主效应图等分析用 Minitab 17.2 工具软件进行统计分析。

8. 统计分析的设计及能力评价原则

对本次循环比对计划实验室的检测结果,按下式计算 Z 比分数

 $Z=(x-X)/\sigma$

式中: x-实验室测试结果;

X-指定值;

σ-变动性度量值(目标标准偏差)。

本次循环比对计划统计分析采用稳健(Robust)技术处理,以稳健平均值作为指定值,稳健标准偏差为变动性度量值(目标标准偏差),计算各实验室结果的 Z 比分数(Z 比分数)。稳健平均值和稳健标准第4页/共40页

偏差的计算及意义参见 ISO 13528: 2005《利用实验室间比对的能力验证中的统计方法》。

本次循环比对计划涉及的其它统计量,如:结果数、最小值、最大值和极差等,其意义及相关计算方法参见 CNAS GL02:2006《能力验证结果的统计处理和能力评价指南》。

本次循环比对统计分析有关统计量的意义及其计算方法详见 GB/T 28043-2011/ISO13528:2005。

本次循环比对计划以 Z 比分数评价实验室的结果, 即:

|Z|≤2 为满意结果;

2< | Z | <3 为有问题结果 (可疑值);

|Z|≥3 为不满意结果(离群值)。

为了清晰表示各实验室参加能力验证计划的结果,将 Z 比分数按 大小顺序排列作柱状图,每一个柱条标有该实验室的代码。从该柱状 图上,每一个实验室很容易将其结果与其他参加实验室进行比较,了 解其结果在本次计划中所处的水平。

二. 统计处理结果及能力评价

1. 原始数据

				Pb 分析结	果		
实验室编号		- - - - - - - - - -					
	1	2	3	4	5	6	平均值,%
LAB01	53. 31	53. 30	53. 25				53. 29
LAB02	53.75	53. 67	53. 36	53. 36			53. 54
LAB07	53.66	53.63					53.64
LAB08	52.83	52.93					52.88
LAB10	53.05	53.06	53. 07	53.09	53. 05	53. 07	53.07
LAB12	53. 19	53. 29	53. 15	53. 19			53. 20
LAB13	53.30	53. 18					53. 24
LAB14	53. 19	53. 17					53. 18
LAB15	53. 19	53. 20	53. 23	53. 25			53. 22
LAB17	53. 32	53. 30	53.35	53. 28			53. 31
LAB18	53.08	53. 01	53. 06		_		53.05
LAB19	53. 12	53. 34					53. 23
LAB21	55.86	55. 65			1		55. 76
LAB22	52.96	52.95	52. 93	53 <mark>. 0</mark> 8	無		52.98
LAB24	53.02	53. 22	53. 27		Ax		53. 17
LAB25	53. 37	53. 40	53. 55	53. 31	53. 33	53. 32	53.38
LAB26	53.04	53. 21	53. 12	53. 30			53. 17
LAB29	52. 76	52. 88	52. 82				52.82
LAB33	53. 39	53. 28	53. 27	53. 42			53.34
LAB35	52.79	52.88					52.84
LAB36	53. 33	53. 18	53. 21	53. 18	53. 18	53. 38	53. 24
LAB37	53. 19	53. 37					53. 28
LAB41	53.10	53. 07	53. 14				53.10
LAB42	53. 17	53. 03	52. 98	52.99			53.04
LAB43	53.35	53. 39					53. 37
LAB46	53. 25	53. 24	53. 07	53. 16			53. 18
LAB49	53. 20	53. 20					53. 20
LAB51	52. 98	53. 16	53. 15	53.14			53.11
LAB52	53.40	53. 34	53. 23				53. 32

第6页/共40页

LAB56	52.96	52. 87					52. 92
LAB58	53. 27	53. 19					53. 23
LAB59	53. 31	53.41					53. 36
LAB61	53. 47	53. 22					53. 34
LAB63	53. 28	53. 36					53. 32
LAB64	53. 16	53. 14	53. 22				53. 17
LAB65	53.06	53.02	53. 07	53. 11			53. 07
LAB67	53. 13	52. 76					52. 94
LAB68	53. 32	53. 43	53. 32	53.30			53. 34
LAB70	53. 37	53. 36					53. 36
LAB71	53. 10	53. 10	53. 11	53. 12	53. 12	53. 14	53. 12
LAB72	53. 16	53. 15	53.14	53. 11	53. 24	53. 07	53. 15

		M		Au 分析组	吉果		
实验室编号			平行分析	结果, g/t	411		亚坎佶 ~/+
	1	2	3	4	5	6	平均值, g/t
LAB01	3.00	2.75	3. 10		A A		2.95
LAB02	3. 17	2.83	3. 21		4		3. 07
LAB07	2.49	2. 56					2. 52
LAB08	2.85	2.95					2.90
LAB09	3. 18	2. 92	3. 31	2.94	3.03		3.08
LAB10	3. 17	3. 07	3. 07	2.87	3. 27	3. 17	3. 10
LAB12	2.92	2.98	2.84	2.76			2.88
LAB13	3. 13	3.06	2.95	2.94			3.02
LAB15	3.00	3. 13	3. 33	2.93			3. 10
LAB17	3.09	3. 21	2.84	2.93			3.02
LAB18	2.90	2.80	3.00				2.90
LAB19	3.40	3.80	3.60				3.60
LAB21	3.50	2.90					3. 30
LAB22	3. 10	3. 10	3.00	3.00			3. 05

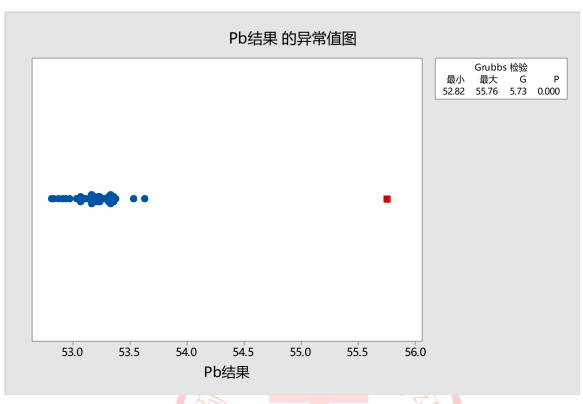
LAB24	3.00	3.00	3. 13				3.04
LAB25	2.73	2. 93	2.73	2.87			2.82
LAB26	3. 29	3. 50	2.99	3.00	3. 37		3. 23
LAB29	3. 10	3. 02	2.99				3. 04
LAB33	3. 10	3.00	3.00	2.90			3.00
LAB35	2.88	2. 77					2.83
LAB36	3.05	2. 90	2.90	3.00			2. 96
LAB37	3.05	3. 15					3. 10
LAB39	3.30	3. 20	3. 40	2.70			3. 15
LAB41	3. 10	3. 04	3.01				3.05
LAB42	3.75	3. 95					3.85
LAB43	3. 12	3. 55	松	Villi			3. 34
LAB46	2.50	2. 55	177		/		2. 52
LAB49	3.00	2. 86					2. 93
LAB51	3.00	3.00	3.00	3.00	F		3.00
LAB52	2.63	2.06			1		2. 35
LAB56	2. 91	2.88			採		2. 90
LAB58	2.95	3. 01			Ex.		2. 98
LAB59	2. 78	2.88					2.83
LAB61	2.93	2. 93	2.73				2.86
LAB63	3.44	3. 39					3. 42
LAB64	2.92	2. 99	3. 19				3. 03
LAB65	3.20	3. 77	3. 47	3. 20			3. 41
LAB66	3.40	3. 15	3. 50	3.90			3. 48
LAB67	2. 67	2. 73	2.60				2. 67
LAB68	3.20	3.40	3. 10	3. 10			3. 20
LAB70	3.06	3. 12					3. 09
LAB71	2.84	2. 91	2. 97	2.97	2. 97	3. 11	2. 96
LAB72	3.04	2. 97	2. 97	2.91	2. 91	3. 17	3.00
LAB73	2.41	2. 52	2. 24	2.2			2. 34

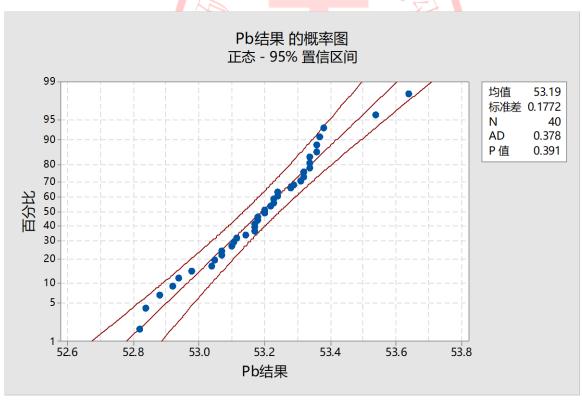
	Ag 分析结果							
实验室编号	平行分析结果, g/t							
	1	2	3	4	5	6	g/t	
LAB01	6553.6	6560.4	6573.3				6562.4	
LAB02	6422	6417	6484	6487			6452. 5	
LAB07	6752.3	6750.5					6751.4	
LAB08	6621.3	6633.7					6627.5	
LAB09	6494.1	6464.9	6476. 7	6520.3	6522.6		6495. 7	
LAB10	6596.6	6613.3	6653	6699.2	6695. 5	6687. 2	6657.5	
LAB12	6575.0	6576.0	6595.0	6606.0			6588.0	
LAB13	6713.9	6729.4	6665. 2	6666. 1			6693. 7	
LAB15	6708.6	6645. 4	6624. 4	6715. 5			6673.5	
LAB17	6641.0	6625. 4	6645.8	6634. 2	5		6636.6	
LAB18	6605.0	6656. 0	6637.0				6632.7	
LAB19	6618.0	6651.0	6636.0		E		6635.0	
LAB21	6529.5	6554. 1		F	1		6541.8	
LAB22	6650.0	6649.0	6640.0	663 <mark>6.</mark> 0	张		6643.8	
LAB24	6695.6	6671. 3	6686.3		\$ x		6684. 4	
LAB25	6688.2	6705. 7	6691.2	6719. 1	LT.		6701.1	
LAB26	6537.0	6588. 3	6497.1	6545. 1	6581. 9		6549.9	
LAB29	6373.6	6386. 4	6377.0				6379.0	
LAB33	6535.2	6504.6	6657.6	6565. 4			6565. 7	
LAB35	6573.9	6529.9					6551.9	
LAB36	6651.0	6667.7	6634.3	6647.0			6650.0	
LAB37	6505.6	6532. 2					6518.9	
LAB39	6609.7	6620.8	6561.6	6563.3			6588. 9	
LAB41	6687.9	6690.7	6687.3				6688.6	
LAB42	6631.9	6657.3					6644. 6	
LAB43	6628.0	6682.2					6655. 1	
LAB46	6377.8	6392.1					6385.0	
LAB49	6598.0	6670.0					6634.0	
LAB51	6563.9	6579.0	6555.0	6572.0			6567.5	

6600.8	6785.3	6652.9	6779.5	6690.6	6699.8	6701.5
6646.6	6631.1	6618.3				6632.0
6610.0	6638.6					6624. 3
6604.3	6592.3					6598. 3
6578. 2	6594.2	6600.0				6590.8
6491.6	6495.6					6493.6
6667.5	6653.6					6660.6
6565. 2	6573.9	6537.8	6594.8			6567. 9
6361.6	6440.0	6500.0	6520.0			6455.0
6611.2	6650.3	6578.3				6613.3
6655.0	6666.0	6650.0	6655.0			6657.0
6653.5	6722. 1	长	VIIII			6687.8
6640.3	6643.3	6651.8	6682.0	6685.7	6690. 2	6665.6
6672.0	6668.0	6666.0	6659.0	6645.0	6633.0	6657. 2
6702.8	6698.7	6714.8	6710.6			6706. 7
	6646. 6 6610. 0 6604. 3 6578. 2 6491. 6 6667. 5 6565. 2 6655. 0 6653. 5 6640. 3	6646. 6 6631. 1 6610. 0 6638. 6 6604. 3 6592. 3 6578. 2 6594. 2 6491. 6 6495. 6 6667. 5 6653. 6 6565. 2 6573. 9 6361. 6 6440. 0 6655. 0 6666. 0 6653. 5 6722. 1 6640. 3 6643. 3 6672. 0 6668. 0	6646. 6 6631. 1 6618. 3 6610. 0 6638. 6 6604. 3 6592. 3 6578. 2 6594. 2 6600. 0 6491. 6 6495. 6 6667. 5 6653. 6 6361. 6 6440. 0 6500. 0 6611. 2 6650. 3 6578. 3 6655. 0 6666. 0 6650. 0 6653. 5 6722. 1 6640. 3 6651. 8 6672. 0 6668. 0 6666. 0	6646. 6 6631. 1 6618. 3 6610. 0 6638. 6 6604. 3 6592. 3 6578. 2 6594. 2 6600. 0 6491. 6 6495. 6 6667. 5 6653. 6 6565. 2 6573. 9 6537. 8 6594. 8 6361. 6 6440. 0 6500. 0 6520. 0 6611. 2 6650. 3 6578. 3 6655. 0 6666. 0 6650. 0 6655. 0 6640. 3 6643. 3 6651. 8 6682. 0 6672. 0 6668. 0 6666. 0 6659. 0	6646. 6 6631. 1 6618. 3 6610. 0 6638. 6 6604. 3 6592. 3 6578. 2 6594. 2 6600. 0 6491. 6 6495. 6 6567. 5 6653. 6 6565. 2 6573. 9 6537. 8 6594. 8 6361. 6 6440. 0 6500. 0 6520. 0 6611. 2 6650. 3 6578. 3 6655. 0 6666. 0 6650. 0 6655. 0 6640. 3 6643. 3 6651. 8 6682. 0 6645. 0 6672. 0 6668. 0 6666. 0 6659. 0 6645. 0	6646. 6 6631. 1 6618. 3 6610. 0 6638. 6 6604. 3 6592. 3 6578. 2 6594. 2 6600. 0 6491. 6 6495. 6 6667. 5 6653. 6 6361. 2 6573. 9 6537. 8 6594. 8 6361. 6 6440. 0 6500. 0 6520. 0 6611. 2 6650. 3 6578. 3 6653. 5 6722. 1 6640. 3 6643. 3 6651. 8 6682. 0 6685. 7 6690. 2 6672. 0 6668. 0 6666. 0 6659. 0 6645. 0 6633. 0

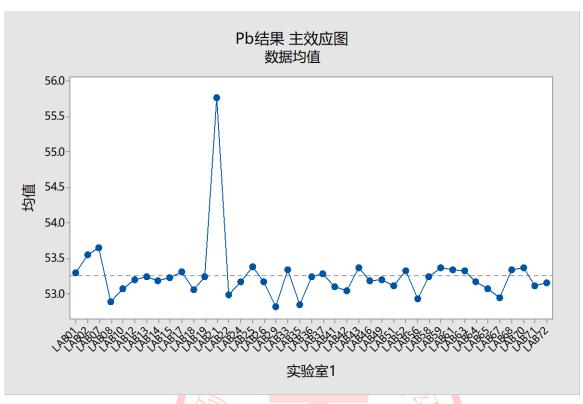
实验室编号	平均值	Z比分数	与中位值的差,%
LAB01	53. 29	0.54	0.09
LAB02	53.54*	2.01	0.34
LAB07	53.64*	2.61	0.44
LAB08	52. 88	-1.90	-0.32
LAB10	53. 07	-0.77	-0.13
LAB12	53. 20	0.00	0
LAB13	53. 24	0.24	0.04
LAB14	53. 18	-0.12	-0.02
LAB15	53. 22	0.12	0.02
LAB17	53. 31	0.67	0.11
LAB18	53. 05	-0.89	-0.15

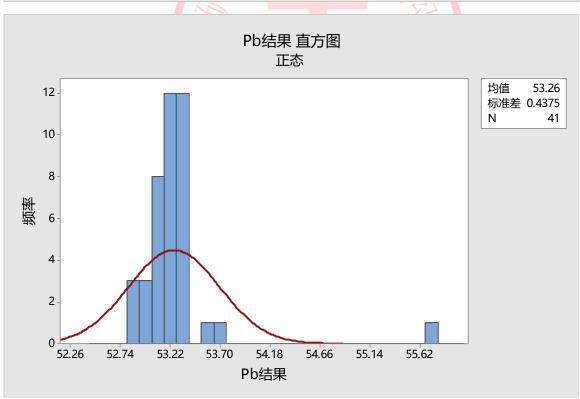
LAB19			
	53. 23	0.18	0.03
LAB21	55 . 76 §	15. 18	2. 56
LAB22	52. 98	-1.30	-0. 22
LAB24	53. 17	-0.18	-0.03
LAB25	53. 38	1.07	0.18
LAB26	53. 17	-0.18	-0.03
LAB29	52.82*	-2.25	-0.38
LAB33	53. 34	0.83	0.14
LAB35	52.84*	-2.13	-0.36
LAB36	53. 24	0. 24	0.04
LAB37	53. 28	0. 47	0.08
LAB41	53. 10	-0.59	-0.10
LAB42	53. 04	-0, 95	-0.16
LAB43	53. 37	1.01	0. 17
LAB46	53. 18	-0.12	-0.02
LAB49	53. 20	0.00	0.00
LAB51	53. 11	-0. 55	-0.09
LAB52	53. 32	0.71	0.12
LAB56	52. 92	-1.66	-0. 28
LAB58	53. 23	0. 18	0.03
LAB59	53. 36	0. 95	0.16
LAB61	53. 34	0.83	0. 14
LAB63	53. 32	0.71	0.12
LAB64	53. 17	-0.18	-0.03
LAB65	53. 07	-0.77	-0.13
LAB67	52. 94	-1.54	-0. 26
LAB68	53. 34	0.83	0. 14
LAB70	53. 36	0.95	0.16
LAB71	53. 12	-0.50	-0.09
LAB72	53. 15	-0.33	-0.05
结果数	41		
总体平均值	53. 26	未剔除异常值,作	又供参考

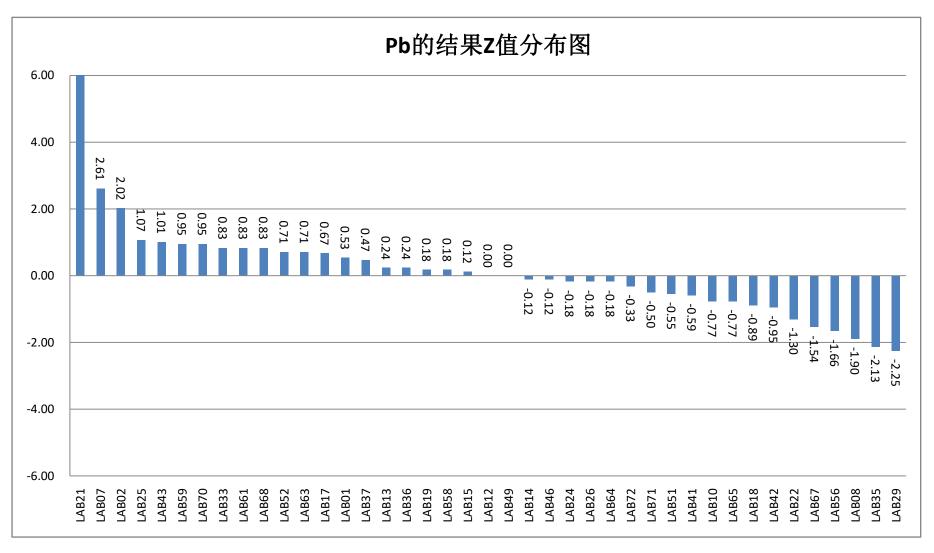

中位值	53. 20
标准化 IQR	0. 169
稳健 CV (%)	0. 317
最大 值	55. 76
最小值	52. 82
极差	2. 94


注:加§号的数值为离群值,即 $|z| \ge 3$;加*号的数值为可疑值,即|z| < |z| < 3。

根据 GB/T8152.1-2006 方法规定计算 R 值,中位值=53.20%时 R 值=0.335%,各实验室根据采用的方法判断是否超差偏离







Pb 量分析参与实验室有 41 家, |Z| < 2 的有 36 家,2< |Z| <3 的有 4 家, $|Z| \ge 3$ 有 1 家。

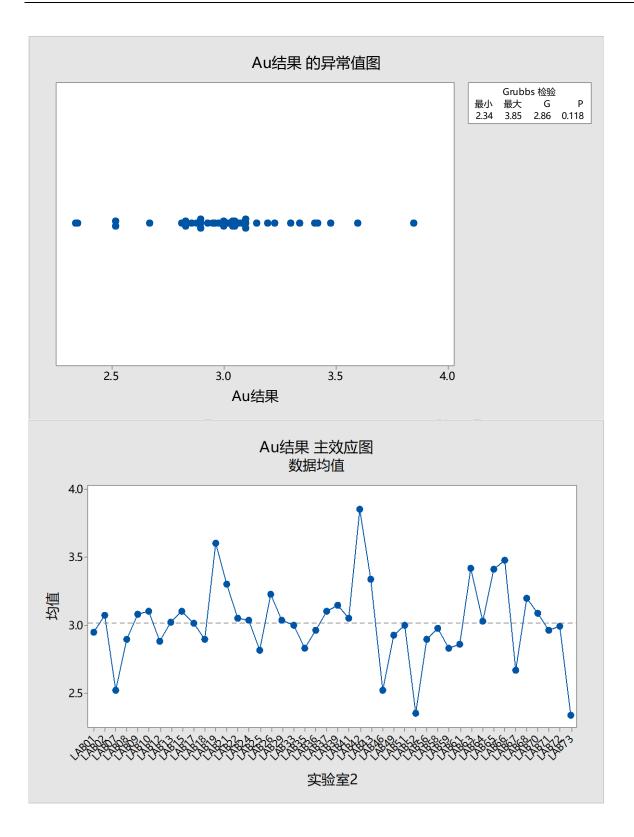
39 家采用《GB/T 8152.1-2006 铅精矿化学分析方法 铅量的测定 酸溶解-EDTA 滴定法》分析,2 家采用企标分析,均为化学滴定方法。方法无差异。

+1> 1/11/1

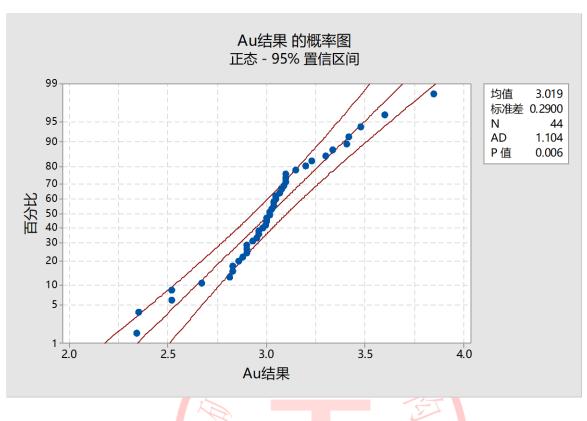
3 Au 的数据分析

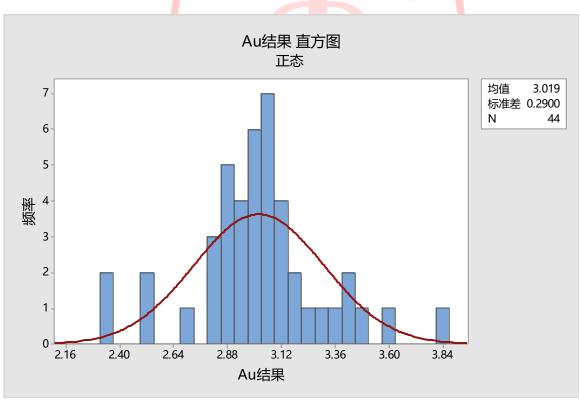
实验室编号	平均值.g/t	Z比分数	与中位值的差,g/t
LAB01	2.95	-0.47	-0.07
LAB02	3.07	0.34	0.05
LAB07	2.52 §	-3.37	-0.50
LAB08	2.90	-0.81	-0.12
LAB09	3.08	0.40	0.06
LAB10	3.10	0.54	0.08
LAB12	2.88	-0.94	-0.14
LAB13	3.02	0.00	0.00
LAB15	3.10	0.54	0.08
LAB17	3.02	-0.03	0.00
LAB18	2.90	-0.81	-0.12
LAB19	3.60 §	3.91	0.58
LAB21	3.30	1.89	0.28
LAB22	3.05	0.20	0.03
LAB24	3.04	0.13	0.02
LAB25	2.82	-1.38	-0.21
LAB26	3.23	1.42	0.21
LAB29	3.04	0.13	0.02
LAB33	3.00	-0.13	-0.02

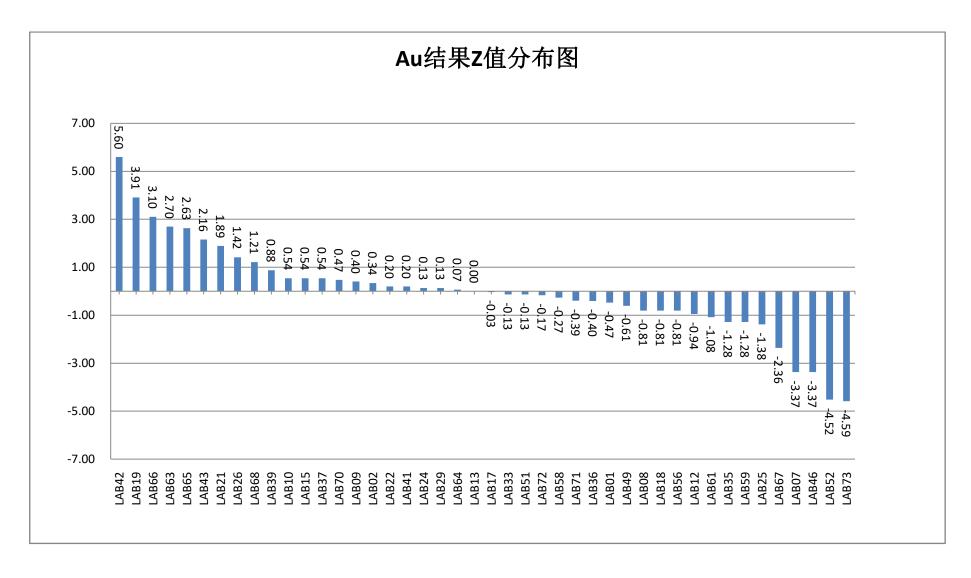
LAB35 LAB36	2.83	-1.28	-0.19
LAB36	2.96		
		-0.40	-0.06
LAB37	3.10	0.54	0.08
LAB39	3.15	0.88	0.13
LAB41	3.05	0.20	0.03
LAB42	3.85 §	5.60	0.83
LAB43	3.34*	2.16	0.32
LAB46	2.52 §	-3.37	-0.50
LAB49	2.93	-0.61	-0.09
LAB51	3.00	-0.13	-0.02
LAB52	2.35 §	-4.52	-0.67
LAB56	2.90	-0.81	-0.12
LAB58	2.98	-0.27	-0.04
LAB59	2.83	-1.28	-0.19
LAB61	2.86	-1.08	-0.16
LAB63	3.42*	2.70	0.40
LAB64	3.03	0.07	0.01
LAB65	3.41*	2.63	0.39
LAB66	3.48 §	3.10	0.46
LAB67	2.67*	-2.36	-0.35
LAB68	3.20	1.21	0.18
LAB70	3.09	0.47	0.07
LAB71	2.96	-0.39	-0.06
LAB72	3.00	-0.17	-0.03
LAB73	2.34 §	-4.59	-0.68
实验室数	44		
总体平均值	3.02	离群值未排除,参考	
中位值	3.02		
标准化 IQR	0.148		
稳健 CV (%)	4.91		
最大 值	3.85		
最小值	2.34		
极差	1.51		



注:加§号的数值为离群值,即 $|z| \ge 3$;加*号的数值为可疑值,即|z| < |z| < 3。


根据 GB/T8152.10-2006 中 Au 的绝对误差公式为: C_{Au} =3.02,P=0.1291*3.02+0.3987=0.79g/t,各实验室根据采用的方法判断是否超差偏离。





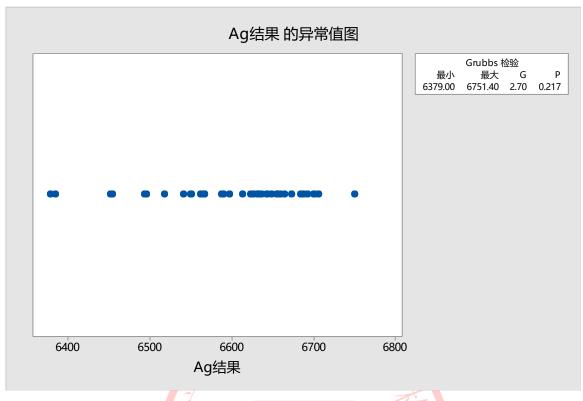
Au 量分析参与实验室有 44 家, | Z | ≤2 的有 33 家,2< | Z | < 3 的有 4 家, | Z | ≥3 有 7 家。

38 家采用《GB/T 8152.10-2006 铅精矿化学分析方法 银量和金量的测定 铅析或灰吹火试金和火焰原子吸收光谱法》分析, 5 家采用 企标分析, 1 家采用 DZG 93-09, 方法均为火试金法和 AAS 法。

4 Ag 的数据分析

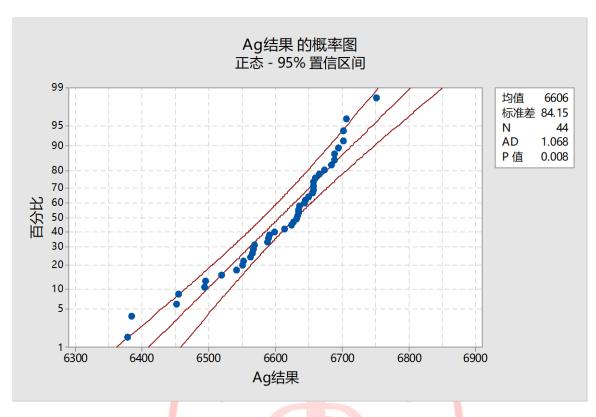
实验室编号	平均值, g/t	Z比分数	与中位值的差,g/t
LAB01	6562.4	-1.23	-72.1
LAB02	6452.5 §	-3.11	-182.0
LAB07	6751.4	2.00	116.9
LAB08	6627.5	-0.12	-7.0
LAB09	6495.7*	-2.37	-138.8
LAB10	6657.5	0.39	23.0
LAB12	6588.0	-0.80	-46.5
LAB13	6693.7	1.01	59.2
LAB15	6673.5	0.67	39.0
LAB17	6636.6	0.04	2.1
LAB18	6632.7	-0.03	-1.8
LAB19	6635.0	0.01	0.5
LAB21	6541.8	-1.59	-92.7
LAB22	6643.8	0.16	9.3
LAB24	6684.4	0.85	49.9
LAB25	6701.1	1.14	66.5
LAB26	6549.9	-1.45	-84.6
LAB29	6379.0 §	-4.37	-255.5
LAB33	6565.7	-1.18	-68.8
LAB35	6551.9	-1.41	-82.6

LAB36	6650.0	0.27	15.5		
LAB37	6518.9	-1.98	-115.6		
LAB39	6588.9	-0.78	-45.7		
LAB41	6688.6	0.93	54.1		
LAB42	6644.6	0.17	10.1		
LAB43	6655.1	0.35	20.6		
LAB46	6385.0 §	-4.27	-249.5		
LAB49	6634.0	-0.01	-0.5		
LAB51	6567.5	-1.15	-67.0		
LAB53	6701.5	1.15	67.0		
LAB56	6632.0	-0.04	-2.5		
LAB58	6624.3	-0.17	-10.2		
LAB59	6598.3	-0.62	-36.2		
LAB61	6590.8	-0.75	-43.7		
LAB63	6493.6*	-2.41	-140.9		
LAB64	6660.6	0.45	26.1		
LAB65	6567.9	-1.14	-66.6		
LAB66	6455.0 §	-3.07	-179.5		
LAB67	6613.3	-0.36	-21.2		
LAB68	6657.0	0.38	22.5		
LAB70	6687.8	0.91	53.3		
LAB71	6665.6	0.53	31.1		
LAB72	6657.2	0.39	22.7		
LAB73	6706.7	1.24	72.2		
结果数	44				
总体平均值	6606.1	离群值未排	除,参考		
中位值	6634.5				
标准化 IQR	58.56				
稳健 CV (%)	0.8811				
最大 值	6751.4				
最小值	6379.0				
极差	372.4				

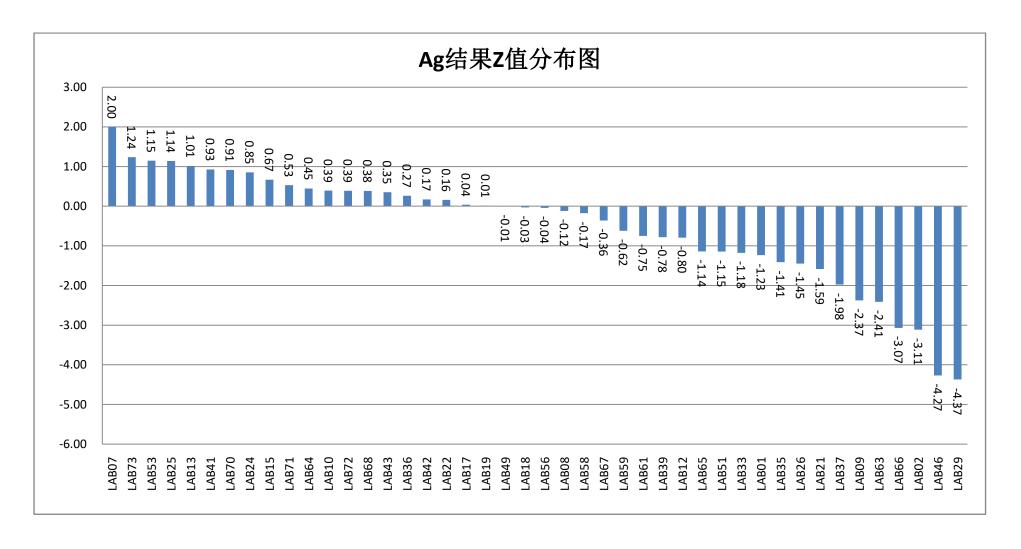



注:加§号的数值为离群值,即 $|Z| \ge 3$;加*号的数值为可疑值,即2 < |Z| < 3

根据 GB/T8152.10-2006 中实验室间 Ag 的绝对误差公式为: P=0.0378X6634.5+24.457=275.2g/t。各实验室根据采用的方法判断是否超差偏离。







Ag 量分析参与实验室有 44 家, | Z | ≤2 的有 38 家, 2< | Z | < 3 的有 2 家, | Z | ≥3 有 4 家。

38 家采用《GB/T 8152.10-2006 铅精矿化学分析方法 银量和金量的测定 铅析或灰吹火试金和火焰原子吸收光谱法》分析,1 家采用GB/T 14353.10-2010,5 家采用企标分析,方法均为火试金法和 AAS法,方法无差异。

附录 A 参与单位: (排名按首字拼音顺序)

单位名称
AHK 检验集团中国天津实验室
Alfred H Knight International
Laboratory Services International BV (LSI)
安徽省有色金属材料质量监督检验站有限公司
巴彦淖尔市紫金矿冶检测技术有限公司
巴彦淖尔西部铜业有限公司质检中心
白银有色集团股份有限公司检测控制中心
北矿检测技术有限公司徐州分所
郴州市金贵银业股份有限公司
赤峰山金银铅有限公司
大冶有色设计研究院有限公司
福建紫金矿冶测试技术有限公司
福建紫金矿冶测试技术有限公司厦门分公司
广西河池市南方有色集团有限公司
国家金银及制品质量 <mark>监督检验中心(长春)</mark>
汉中锌业有限责任公司
河北华澳矿业开发有限公司
河南省黄金贵金属产品质量监督检验中心
河南豫光金铅股份有限公司检测中心
河南中原黄金冶炼厂有限责任公司研发中心
湖南金旺铋业股份有限公司
湖南省桂阳银星有色冶炼有限公司质保部
湖南省硕远检测技术有限公司
湖南有色金属研究院分析测试所
济源市万洋冶炼(集团)有限公司
江铜集团铅锌金属有限公司
江西新金叶实业有限公司
连云港出入境检验检疫局 化矿实验室
辽宁排山楼黄金矿业有限责任公司
内蒙古乌拉特后旗紫金矿业有限公司
山东恒邦冶炼股份有限公司中心化验室

陕西东岭冶炼有限公司

上海英斯贝克商品检验有限公司金属矿产实验室

韶关冶炼厂质控车间

水口山有色金属有限责任公司

通标标准技术服务 (天津) 有限公司

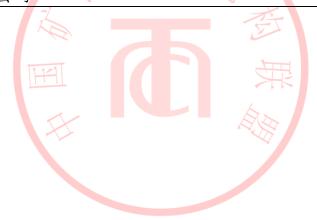
铜陵出入境检验检疫局铜原料及产品检测实验室

西藏玉龙铜矿股份有限公司

云南驰宏资源综合利用有限公司技术监督部

云南锡业矿冶检测中心

长沙矿冶研究院有限责任公司分析检测中心


中国检验认证集团广西有限公司综合实验室

中矿(天津)岩矿检测有限公司

中冶葫芦岛有色金属集团有限公司检测中心

株冶集团质量检测中心

北矿检测技术有限公司

附录 B 山东恒邦冶炼股份有限公司铅精矿(高银)样品均匀性检验报告

实验单位: 山东恒邦冶炼股份有限公司检测中心

日期: 2017.4.9-4.24

实验过程:将制备好的铅精矿(高银)样品随机取 12 个样, 每个样测定 Pb、Au、Ag 含量,

重复测定2次,进行样品均匀性检验。

实验结果:

(1) Pb 的测定

铅精矿(高银)

水平;	Pb 测定	Pb 测定值 x _{ij}		$\sum_{j=1}^{ni} (x_{ij} - \overline{x_i})^2$	= X	$n_i \left(\frac{-}{x_i} - \frac{=}{X}\right)^2$
1	53.04	53.16	53.10	0.0072	_	0.0024
2	53.14	53.01	53.08	0.0085	İ	0.0002
3	52.91	53.03	52.97	0.0072		0.0182
4	52.97	53.09	53.03	0.0072	**	0.0025
5	52.93	53.00	52. <mark>97</mark>	0.0025	F2 07	0.0202
6	52.96	53.08	53.02	0.0072	53. 07	0.0041
7	53	53.12	53.06	53.06 0.0072		0.0001
8	53.04	53.16	53.10	0.0072		0.0024
9	53.3	53.10	53.20	0.0200		0.0362
10	53.17	53.29	53.23	0.0072		0.0542
11	52.97	52.98	52.98	0.0000		0.0164
12	53.00	53.12	53.06	0.0072		0.0001

m=12 水平,每个水平做 n=2 次,共 24 个数据, N=24。

自由度 f₁=m-1=12-1=11, f₂=N-m=24-12=12

样品间平方和
$$SS_i = \sum_{i=1}^m n_i (\overline{x_i} - \overline{x})^2 = 0.157$$

均方
$$MS_1 = \frac{SS_1}{f_1} = 0.0143$$

样品内平方和
$$SS_2 = \sum_{i=1}^m \sum_{j=1}^{n_i} (x_{ij} - \overline{x_i})^2 = 0.0885$$

均方
$$MS_2 = \frac{SS_2}{f_2} = 0.0074$$

统计量:
$$F = \frac{MS_1}{MS_2} = 1.93$$

在显著性水平 a=0.05 下, 临界值 F_{0.05} (11,12) =2.69

本实验 F<F_{0.05} (11,12), 所以整批样品铅的检测结果不存在显著性差异,是均匀的。

松粒测验

(2) Au 的测定

铅精矿(高银)

			,			
水平j	Au 测定	E值 x _{ij}	$\overline{x_i}$	$\sum_{j=1}^{ni} (x_{ij} - \overline{x_i})^2$	$=\frac{1}{x}$	$n_i \left(\frac{-}{\chi_i} - \frac{=}{\chi} \right)^2$
1	2.87	2.98	2.93	0.0060	採	0.020
2	3.33	3.10	3.22	0.0265	<u></u>	0.071
3	2.87	3.03	2.95	0.0128		0.012
4	3	3.10	3.05	0.0050		0.001
5	3	3.12	3.06	0.0072	2 02	0.002
6	3.2	2.98	3.09	0.0242	3.03	0.008
7	3.07	3.10	3.09	0.0005		0.007
8	2.93	3.21	3.07	0.0392		0.004
9	2.87	2.97	2.92	0.0050		0.022
10	2.93	2.86	2.90	0.0025		0.034

按上述方法计算样品间平方和 $SS_i = \sum_{i=1}^m n_i (x_i - x_i)^2 = 0.183$

均方 MS₁=0.183/9=0.0203

样品内平方和
$$SS_2 = \sum_{i=1}^m \sum_{j=1}^{n_i} (x_{ij} - \overline{x_i})^2 = 0.129$$

均方 MS₂=0.129/10=0.0129

统计量:
$$F = \frac{MS_1}{MS_2} = 1.58$$

在显著性水平 a=0.05 下,临界值 F_{0.05} (9,10) =3.02

本实验 $F < F_{0.05}$ (9,10),所以整批样品金的检测结果不存在显著性差异,是均匀的。

(3) Ag 的测定:

铅精矿(高银)

水平;	Ag 测兌	E值 x _{ij}	$\overline{x_i}$	$\sum_{j=1}^{ni} (x_{ij} - \overline{x_i})^2$	= X	$n_i \left(\frac{-}{x_i} - \frac{=}{x} \right)^2$
1	6613.1	6600.0	6606.6	85.8050		551.12
2	6614.6	6602.2	660 <mark>8.4</mark>	76.8800	登	435.125
3	6618.0	6623.0	6620.5	12.5000		14.045
4	6622.5	6602.1	6612.3	208.0800		235.445
5	6626.0	6655.0	6640.5	420.5000	6623.2	602.045
6	6650.8	6646.0	6648.4	11.5200	0023.2	1275.125
7	6644.2	6643.0	6643.6	0.7200		836.405
8	6593.4	6645.0	6619.2	1331.2800		31.205
9	6626.9	6603.0	6615.0	285.6050		134.48
10	6624.2	6610.0	6617.1	100.8200		73.205

按上述方法计算样品间平方和 $SS_1 = \sum_{i=1}^{m} n_i (\overline{x_i} - \overline{x})^2 = 4188.2$

均方 MS₁=4188.29/9=465.4

样品内平方和
$$SS_2 = \sum_{i=1}^m \sum_{j=1}^{n_i} (x_{ij} - \overline{x_i})^2 = 2533.7$$

均方 MS₂=2533.7/10=253.4

统计量:
$$F = \frac{MS_1}{MS_2} = 1.84$$

在显著性水平 a=0.05 下, 临界值 F_{0.05} (9,10) =3.02

本实验 F<F_{0.05} (9,10), 所以整批样品银的检测结果不存在显著性差异,是均匀的。

山东恒邦冶炼股份有限公司检测中心

附录 C 北矿检测技术有限公司 2017 年铅精矿(高银)样品均匀性 检验报告

测试单位: 北矿检测技术有限公司

测试日期: 2016. 4. 2-2016. 4. 12 样品提供单位: 山东恒邦冶炼股份有限公司

样品数量: 10 份

测定方法:将制备好的铅精矿样品随机取 12 个样, 每个样测定 Pb、Au、Ag 含量, 重复测

定 2-3 次,进行样品均匀性检验。

1 Pb 的测定

水平j	Pl	o 测定值	X _{ij}	$\frac{-}{x_i}$	$\sum_{j=1}^{ni} (x_{ij} - \overline{x_i})^2$	= x	$\begin{array}{ccc} - & = & \\ n_{i}^{\chi}{}_{i}(& X - &) & ^{2} \end{array}$
1	53.01	53.25	53.07	53.11	0.0312		0.002133
2	52.88	53.25	53.2	53.11	0.0806		0.002133
3	53.03	53.16	53.62	53.27	0.1922		0.053333
4	53.04	53.32	53.03	53.13	0.0542		0.000133
5	53.17	53.14	53.28	53.20	0.0109	53. 14	0.0108
6	53.35	53.07	53.01	53.14	0.0659	95 . 14	0.000133
7	53.22	52.94	53.16	53.11	0.0435		0.0027
8	53.15	53.05	53.01	53.07	0.0104		0.013333
9	53.24	52.99	53.01	53.08	0.0386		0.009633
10	53.29	53.05 53.		53.15	0.0312		0.000533

m=10 水平,每个水平做 n=3 次,共 30 个数据,N=30。 自由度 f_1 =m-1=9, f_2 =N-m=30-10=20

样品间平方和
$$SS_1 = \sum_{i=1}^{m} n_i (\overline{x_i} - \overline{x})^2 = 0.0.0949$$

均方
$$MS_1 = \frac{SS_1}{f_1} = 0.0105$$

样品内平方和
$$SS_2 = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \overline{x_i})^2 = 0.559$$

均方
$$MS_2 = \frac{SS_2}{f_2} = 0.028$$

统计量:
$$F = \frac{MS_1}{MS_2} = 0.38$$

在显著性水平 a=0.05 下,临界值 F_{0.05} (9,20) =2.39

本实验 F<F_{0.05} (9,20),所以整批样品铅的检测结果不存在显著性差异,是均匀的。

2 Au 的测定

水平j	Au 测兌	E值 x _{ij}	$\frac{1}{x_i}$	$\sum_{j=1}^{ni} (x_{ij} - \overline{x_i})^2$	$=\frac{1}{x}$	$n_i \left(\frac{1}{x_i} - \frac{1}{x} \right)^2$
1	2.97	3.17	3.07	0.0200		0.0276
2	2.77	3.17	2.97	0.0800		0.0006
3	2.77	3.04	2.91	0.0365		0.0045
4	3.04	2.84	2.94	0.0200	2. 95	0.0003
5	2.91	2.91	2.91	0.0000		0.0036
6	3.24	2.84	3.04	0.0800		0.0153
7	2.77	2.84	2.81	0.0024		0.0435
8	2.97	3.11	3.04	0.0098		0.0153
9	3.04	2.77	2.91	0.0365		0.0045
10	3.04	2.84	2.94	0.0200		0.0003

m=10 水平,每个水平做 n=2 次,共 20 个数据, N=20。

自由度 f₁=m-1=9, f₂=N-m=20-10=10

样品间平方和
$$SS_1 = \sum_{i=1}^{m} n_i (\overline{x_i} - \overline{x})^2 = 0.116$$

均方
$$MS_1 = \frac{SS_1}{f_1} = 0.013$$

样品内平方和
$$SS_2 = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \overline{x_i})^2 = 0.305$$

均方
$$MS_2 = \frac{SS_2}{f_2} = 0.031$$

统计量:
$$F = \frac{MS_1}{MS_2} = 0.42$$

在显著性水平 a=0.05 下, 临界值 F_{0.05} (9,10) =3.02

本实验 F<F_{0.05} (9,10), 所以整批样品金的检测结果不存在显著性差异,是均匀的。

3 Ag 的测定:

水平j	Ag 测定	差值 x _{ij}	$\overline{x_i}$	$\sum_{j=1}^{ni} (x_{ij} - \overline{x_i})^2$	$\bar{\bar{x}}$	$n_i \left(\frac{1}{x_i} - \frac{1}{x} \right)^2$
1	6659	6666	6662.5	24.5	理	80.6
2	6645	6668	66 <mark>56</mark> .5	264.5	, , ,	0.2
3	6629	6688	6658.5	1740.5	*	11.0
4	6633	6692	6662.5	1740.5		80.6
5	6613	6689	6651.0	2888.0	6656. 2	53.0
6	6616	6680	6648.0	2048.0	0050. 2	132.8
7	6606	6672	6639.0	2178.0		588.2
8	6628	6692	6660.0	2048.0		29.6
9	6645	6689	6667.0	968.0		235.4
10	6632	6681	6656.5	1200.5		80.6

m=10 水平,每个水平做 n=2 次,共 20 个数据,N=20。 自由度 f_1 =m-1=9, f_2 =N-m=20-10=10

样品间平方和
$$SS_i = \sum_{i=1}^m n_i (\overline{x_i} - \overline{x})^2 = 1212$$

均方
$$MS_1 = \frac{SS_1}{f_1} = 134.7$$

样品内平方和
$$SS_2 = \sum_{i=1}^m \sum_{j=1}^{n_i} (x_{ij} - \overline{x_i})^2 = 15100$$

均方
$$MS_2 = \frac{SS_2}{f_2} = 1510$$

统计量:
$$F = \frac{MS_1}{MS_2} = 0.089$$

在显著性水平 a=0.05 下,临界值 F_{0.05}(9,10)=3.02

本实验 F<F_{0.05} (9,10), 所以整批样品银的检测结果不存在显著性差异,是均匀的。

北矿检测技术有限公司

2017.5.10

附录 D 统计分析有关统计量的意义及其计算方法

对本次循环比对计划实验室的检测结果,按下式计算 Z 比分值:

$Z=(x-X)/\sigma$

式中: x-实验室测试结果;

X-指定值;

σ-变动性度量值(目标标准偏差)。

本次循环比对计划统计分析采用稳健(Robust)技术处理,以稳健平均值作为指定值,稳健标准差为变动性度量值(目标标准偏差),计算各实验室结果的 Z 比分数(Z 值),同时给出稳健平均值的标准不确定度。

1. 稳健平均值的计算

本次循环比对各子项目的测定结果,根据 ISO13528: 2005《利用实验室间比对进行能力验证的统计方法》,对稳健平均值进行了统计计算,同时给出了循环比对结果的标准不确定度,供各实验室参考。

1) 稳健平均值x*和稳健标准差s*初始值的计算

有p个数,按从小到大顺序排列: $x_1, x_2, ..., x_{i,...}x_n$

用x*和s*代表稳健平均值和稳健标准差,计算x*和s*的初始值:

2) 对x*和s* 的修正

计算 δ= 1.5 s*

对于每个 x_i (i=1, 2, ... p)计算如下:

$$x_i^* = \begin{cases} x^* - \delta, x_i < x^* - \delta \\ x^* + \delta, x_i > x^* + \delta \\ x_i$$
 介于两者之间

由下式计算x*和s*的新值:

$$x^* = \sum x_i^* / p$$

 $s^* = 1.134 \sqrt{\sum (x_i^* - x^*)^2 / (p-1)}$

稳健平均值 x*和 s*通过迭代计算得出,如,用校正后的数据对 x*和 s*进行多次修正,直到迭代后稳健标准差 s*和稳健平均值 x*的第三位有效数字没有变化为止。

2. 循环比对计划涉及的其他统计量

依据CNAS-GL02《能力验证结果的统计处理和能力评价指南》,本次循环比对涉及的其他统计量,如:结果总数,最大值,最大值和极差,其含义如下:

- ▶ 结果总数—— 在统计分析中某项测定结果的总数。
- **▶ 最大值——** 一组结果中的最大值。
- ▶ 最小值—— 一组结果中的最小值。
- ▶ 极差—— 最大值减最小值。

附录 E 循环比对计划作业指导书

中国矿冶检测机构联盟循环比对计划作业指导书

实验室名称:

本次样品循环比对计划中,贵实验室的代码为: <u>LAB***</u> 为保证样品比对计划的顺利进行,特要求参加单位认真遵循下列条款:

1. 样品

此次比对共有5个样品,各实验室根据报名参加情况,核对样品含量范围:

	铜精矿 铜精矿(高金)		铅精矿		铅精矿(高银)		锌精矿		
Cu	32-37%	Cu	13-17%	Pb	42-48%	Pb	50-55%	Zn	48-52%
Au	2-5g/t	Au	25– 35 g/t	Au	1.5-4g/t	Au	2-5g/t	Cd	0. 2-0. 5%
Ag	130-200g/t	Ag	50-80g/t	Ag	950-1200g/t	Ag	6000-7000g/t	Ag	130-200g/t

所有样品均为铝膜真空包装,贴有联盟样品唯一标识。 实验室在收到样品后,首先对样品是否完整确认,填写样品接收状态确认表中,将信息发送到 bkceshi@bgrimm.com。

2. 检测

在 100-105℃条件下烘 1h 后置于干燥器中,冷至室温;各实验室应在重复性条件下测定样品中各元素,提供方法的名称和编号,企业内部方法请注明。

3. 结果反馈

- 1) Cu、Pb、Zn、Cd 结果以质量百分数报出,实验室对每个测试项目测试 2 次以上,同时计算平均结果。有效数字规定报出: xx. xx%, x. xx%, 0. xxx%, 0. 0xxx%。
- 2) Au、Ag 结果以 g/t 形式报出,实验室对每个测试项目测试 2 次以上,同时计算平均结果。有效数字规定报出: Au 结果小数点后二位 x. xxg/t, Ag 结果小数点后一位 x. xg/t。
- 3) 实验室结果反馈途径: 电子版报告最迟在 2017 年 7 月 1 日之前报结果报告表寄给 联盟秘书处,同时发送电子版至 bkceshi@bgrimm.com,报告日期以寄出为准,无故未按期提 交结果的实验室,其结果将不列入统计。
 - 4) 有关资料电子版请在 http://www.analysis-bgrimm.com 上下载。

4. 保密

比对为联盟循环比对,为各实验室真实情况反应,严禁互相串通结果。

联络方式: 北京市大兴区北兴路东段 22 号院 1 号楼 A702 室,邮编 102628

电话: 010-59069658 Email: bkceshi@bgrimm.com

网址: http://www.analysis-bgrimm.com

中国矿冶检测机构联盟 2017-05-10